Health knowledge made personal
Join this community!
› Share page:
Search posts:

Selenium for Hashimotos Thyroiditis by Jeffrey Dach MD

Posted Nov 07 2009 3:26pm

Selenium molecular structure hashimotos thyroiditisSelenium for Hashimoto's Thyroiditis

by Jeffrey Dach MD

Susan had Hashimoto's thyroiditis, an autoimmune thyroid disorder that causes fatigue, puffy face and muscle weakness.  For the past year, she had been going to another doctor who started her on thyroid medication, and checked her thyroid antibody levels.  The disturbing thing was that her antibodies kept climbing higher on each follow up lab test.  The doctors had no explanation, so she asked me if there was something else that could be done. 

Selenium Can Decrease Antibody Levels

As it turns out, there is a trace mineral called selenium that plays an important role in thyroid biochemistry.  Selenium deficiency has been implicated in the etiology of Hashimoto's thyroiditis, and just by supplementing with selenium, there will usually be a decrease in antibody levels.

This was shown in an elegant study from Crete published in 2007.  This study reported a 21 % reduction in TPO antibodies after one year of selenomethionine  supplements(200 mcg per day).  I thought this was rather impressive. 

Selenium electron shell, Hashimotos Thyroid TPO antibodiesAnother study from Germany showed a 40 % reduction in antibody levels after selenium supplementation with 9 of 36 (25%) patients completely normalizing their antibody levels.

Susan was started on her selenium supplements, and 3 months later Susan was a happy camper because her thyroid antibody levels had declined.

Above two images: selenium diagrams courtesy of wikimedia commons

Articles with related Interest:

The Thyroid Nodule Epidemic by Jeffrey Dach MD

Jeffrey Dach MD
4700 Sheridan Suite T
Hollywood Fl 33021

Thyroid. 2007 Jul;17(7):609-12. Effects of 12 months treatment with L-selenomethionine on serum anti-TPO Levels in Patients with Hashimoto's thyroiditis.  Mazokopakis EE, Papadakis JA, Papadomanolaki MG, Batistakis AG, Giannakopoulos TG, Protopapadakis EE, Ganotakis ES. Department of Internal Medicine, University Hospital of Heraklion, Crete, Greece.

OBJECTIVE: We studied the effects of selenium (Se) treatment on serum anti-thyroid peroxidase (TPO) levels in Greek patients with Hashimoto's thyroiditis (HT). DESIGN: We prospectively studied 80 women with HT, median age 37 (range 24-52) years, for 1 year.

All patients received 200 microg Se in the form of l-selenomethionine orally for 6 months. At the end of the 6-month period, 40 patients continued taking 200 microg Se (Group A) and 40 patients stopped (Group .

Serum thyrotropin (TSH), free triiodothyronine (FT(3)), free thyroxine (FT(4)), anti-TPO, and anti-thyroglobulin (Tg) levels were measured at baseline and at the end of each 3-month period.

MAIN OUTCOME: There was a significant reduction of serum anti-TPO levels during the first 6 months (by 5.6% and 9.9% at 3 and 6 months, respectively). An overall reduction of 21% (p < 0.0001) compared with the basal values was noted in Group A. In Group B, serum anti-TPO levels were increased by 4.8% (p < 0.0001) during the second 6-month period.

CONCLUSIONS: Our study showed that in HT patients 6 months of Se treatment caused a significant decrease in serum anti-TPO levels, which was more profound in the second trimester. The extension of Se supplementation for 6 more months resulted in an additional 8% decrease, while the cessation caused a 4.8% increase, in the anti-TPO concentrations.
The Journal of Clinical Endocrinology & Metabolism Vol. 87, No. 4 1687-1691, 2002 Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. Gärtner R, Gasnier BC, Dietrich JW, Krebs B, Angstwurm MW. Department of Endocrinology, Medizinische Klinik Innenstadt, University of Munich, D-80336 Munich, Germany.

In areas with severe selenium deficiency there is a higher incidence of thyroiditis due to a decreased activity of selenium-dependent glutathione peroxidase activity within thyroid cells. Selenium-dependent enzymes also have several modifying effects on the immune system. Therefore, even mild selenium deficiency may contribute to the development and maintenance of autoimmune thyroid diseases.

We performed a blinded, placebo-controlled, prospective study in female patients (n = 70; mean age, 47.5 +/- 0.7 yr) with autoimmune thyroiditis and thyroid peroxidase antibodies (TPOAb) and/or Tg antibodies (TgAb) above 350 IU/ml. The primary end point of the study was the change in TPOAb concentrations. Secondary end points were changes in TgAb, TSH, and free thyroid hormone levels as well as ultrasound pattern of the thyroid and quality of life estimation.

Patients were randomized into 2 age- and antibody (TPOAb)-matched groups; 36 patients received 200 microg (2.53 micromol) sodium selenite/d, orally, for 3 months, and 34 patients received placebo. All patients were substituted with L-T(4) to maintain TSH within the normal range. TPOAb, TgAb, TSH, and free thyroid hormones were determined by commercial assays. The echogenicity of the thyroid was monitored with high resolution ultrasound.

The mean TPOAb concentration decreased significantly to 63.6% (P = 0.013) in the selenium group vs. 88% (P = 0.95) in the placebo group. A subgroup analysis of those patients with TPOAb greater than 1200 IU/ml revealed a mean 40% reduction in the selenium-treated patients compared with a 10% increase in TPOAb in the placebo group. TgAb concentrations were lower in the placebo group at the beginning of the study and significantly further decreased (P = 0.018), but were unchanged in the selenium group.

Nine patients in the selenium-treated group had completely normalized antibody concentrations, in contrast to two patients in the placebo group (by chi(2) test, P = 0.01). Ultrasound of the thyroid showed normalized echogenicity in these patients. The mean TSH, free T(4), and free T(3) levels were unchanged in both groups. We conclude that selenium substitution may improve the inflammatory activity in patients with autoimmune thyroiditis, especially in those with high activity. Whether this effect is specific for autoimmune thyroiditis or may also be effective in other endocrine autoimmune diseases has yet to be investigated.
Thyroid. 2002 Oct;12(10):867-78.The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health.
Zimmermann MB, Köhrle J.Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zürich, Switzerland.

Several minerals and trace elements are essential for normal thyroid hormone metabolism, e.g., iodine, iron, selenium, and zinc. Coexisting deficiencies of these elements can impair thyroid function. Iron deficiency impairs thyroid hormone synthesis by reducing activity of heme-dependent thyroid peroxidase. Iron-deficiency anemia blunts and iron supplementation improves the efficacy of iodine supplementation. Combined selenium and iodine deficiency leads to myxedematous cretinism. The normal thyroid gland retains high selenium concentrations even under conditions of inadequate selenium supply and expresses many of the known selenocysteine-containing proteins. Among these selenoproteins are the glutathione peroxidase, deiodinase, and thioredoxine reductase families of enzymes. Adequate selenium nutrition supports efficient thyroid hormone synthesis and metabolism and protects the thyroid gland from damage by excessive iodide exposure. In regions of combined severe iodine and selenium deficiency, normalization of iodine supply is mandatory before initiation of selenium supplementation in order to prevent hypothyroidism. Selenium deficiency and disturbed thyroid hormone economy may develop under conditions of special dietary regimens such as long-term total parenteral nutrition, phenylketonuria diet, cystic fibrosis, or may be the result of imbalanced nutrition in children, elderly people, or sick patients.
Hashimoto’s thyroiditis and the role of selenium. Current concepts
6 Hellenic Journal of Nuclear Medicine ñ January - April 2007 Brief Review Article

Jeffrey Dach MD
4700 Sheridan Suite T
Hollywood Fl 33021

Disclaimer click here:  

The reader is advised to discuss the comments on these pages with his/her personal physicians and to only act upon the advice of his/her personal physician. Also note that concerning an answer which appears as an electronically posted question, I am NOT creating a physician -- patient relationship. Although identities will remain confidential as much as possible, as I can not control the media,
I can not take responsibility for any breaches of confidentiality that may occur.

Link to this article:

Copyright (c) 2009,2010 Jeffrey Dach MD All Rights Reserved. This article may be reproduced on the internet without permission, provided there is a link to this page and proper credit is given.

FAIR USE NOTICE: This site contains copyrighted material the use of which has not always been specifically authorized by the copyright owner. We are making such material available in our efforts to advance understanding of issues of significance. We believe this constitutes a 'fair use' of any such copyrighted material as provided for in section 107 of the US Copyright Law. In accordance with Title 17 U.S.C. Section 107, the material on this site is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

Post a comment
Write a comment:

Related Searches