Health knowledge made personal
Join this community!
› Share page:
Go
Search posts:

NYIT Professor Discovers Next Generation of DNA and RNA Microarrays brings hopes of personalized medicine

Posted Sep 12 2008 6:59pm

A novel invention developed by a scientist from New York Institute of Technology (NYIT) could revolutionize biological and clinical research and may lead to treatments for cancer, AIDS, Alzheimer’s, diabetes, and genetic and infectious diseases.

The invention allows the immobilisation of intact. double-stranded, multi-stranded or alternative DNA or RNA and has the potential to revolutionise biological and clinical research by allowing scientists to duplicate the cell environment and experiment with human, bacterial and viral genes.

Since the discovery of DNA, biologists have worked to unlock the secrets of the human cell.

Scientist Dr. Claude E. Gagna, Ph.D., an associate professor at NYIT’s School of Health Professions, Behavioral and Life Sciences, discovered how to immobilize intact double-stranded (ds-), multi-stranded or alternative DNA and RNA on one microarray. This immobilization allows scientists to duplicate the environment of a cell, and study, examine and experiment with human, bacterial and viral genes. This invention provides the methodology to analyze more than 150,000 non-denatured genes.

The “Gagna/NYIT Multi-Stranded and Alternative DNA, RNA and Plasmid Microarray,” has been patented (#6,936,461) in the United States and is pending in Europe and Asia. Gagna’s discovery will help scientists understand how transitions in DNA structure regulate gene expression (B-DNA to Z-DNA), and how DNA-protein, and DNA-drug interactions regulate genes. The breakthrough can aid in genetic screening, clinical diagnosis, forensics, DNA synthesis-sequencing and biodefense.

“This patent represents a leap forward from conventional DNA microarrays that use hybridisation,” said Dr Gagna, associate professor of the New York Institute of Technology.

This will help pharmaceutical companies produce new classes of drugs that target genes, with fewer side effects,” Dr Gagna continued.

“It will lower the cost and increase the speed of drug discovery, saving millions of dollars.”

Since the invention of the DNA microarray in 1991, the technology has become one of the most powerful research tools for drug discovery research allowing scientist to perform thousands of experiments with incredible accuracy and speed. According to MarketResearch.com sales of DNA microarrays are expected to be higher than $5.3bn (€ bn) by 2009.

The technology hinges around a novel surface that increases the adherence of DNA to the microarray so that any type of nucleic acid can be anchored, unlike conventional arrays that allow only single-stranded DNA to be immobilised.

Additionally, Gagna has developed a novel surface that increases the adherence of the DNA to the microarray so that any type of nucleic acid can be anchored. Unlike conventional microarrays, which immobilize single-stranded DNA, scientists will now be able to “secure intact, non-denatured, unaltered ds-DNA, triplex-, quadruplex-, or pentaplex DNA onto the microarray,” says Gagna. “With this technology, one day we will have tailor-made molecular medicine for patients.”

“With this technology, one day we will have tailor-made molecular medicine for patients,” said Dr Gagna.

and sure the news site are buzzing with the discovery

read more about the research and the original article details at

DrGagna, associate professor of theNew York Institute of Technology. and also at www.nyit.edu/dnamicroarrays


Filed under: Affymetrix, Clinical microarrays, DNA microarray, Next Generation of DNA and RNA Microarrays, Pharmacogenomics, RNA microarray, biodefense, bioinformatics, cancer, cancer microarray, clinical diagnostics, clinical microarray, custom microarray, drug development, drug discoverry, gene expression, genetics, genotyping, microarray, microarray analysis, microarray for clinical diagnostics, personalized medicine

Post a comment
Write a comment:

Related Searches